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The rapid spread of the acquired immunodeficiency 
syndrome (AIDS) epidemic has stimulated discovery for 
therapeutic agents to arrest the replication of the 
causative virus, human immunodeficiency virus (HIV). 
One promising possibility to interrupt the viral life cycle 
is the use of inhibitors of the virally encoded protease 
responsible for viral maturation.1,2 Among the most 
potent inhibitors reported thus far are peptidomimetic 
compounds containing transition-state inserts in place 
of the dipeptidic cleavage sites of the substrates.3-6 The 
low oral bioavailability and rapid biliary excretion of 
peptide-derived compounds7 have limited their utility 
as potential therapeutic agents. Recent advances have 
resulted in HIV protease inhibitors with reduced pep-
tidic character and non-peptidic inhibitors that are more 
orally bioavailable, and an increasing number of HIV 
protease inhibitors8-14 are currently undergoing clinical 
evaluations. We have previously reported the potent 
peptidomimetic inhibitor U-75875 (Noa-His-Cha^tCH-
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Figure 1. Structures of 1 (warfarin) and 2 (phenprocoumon). 
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Figure 2. Lineweaver-Burk plot for inhibitor 2. Initial rates 
of substrate hydrolysis by HIV-I protease were determined 
at various substrate and inhibitor concentrations at 37 0C. The 
substrate, Lys-Ala-Arg-Val-Nle-gNC^Phe-Glu-Ala-Nle, gener­
ates an increase in absorbance at 300 nm upon cleavage. The 
assay buffer consisted of 50 mM NaOAc, 50 mM MES, 100 
mM TES1 1 mM EDTA, and 1 M NaCl at pH 5.0. A 
Lineweaver-Burk plot of the data yielded a .Ki value of 421 ± 
55 nM. 

Scheme 1. Syntheses of 6 and 7 (U-96988)a 

a ( a ) Cat. TsOH, toluene, reflux; (b) 2 equiv of LiNP^2 , 
C6H5CH2Br, THF, - 3 0 0C; (c) 2 equiv of LiNPr^, CH3CH2I, THF, 
- 3 0 0C. 

(OH)CH(OH)]Val-Ile-Amp)15>16 which was shown to have 
inhibitory effect on SrV in Rhesus monkeys only after 
continuous intravenous infusion.17 Interest in orally 
bioavailable HIV protease inhibitors led us to search for 
inhibitors in non-peptidic templates that might offer 
superior biopharmaceutic properties. 

From a fluorescence-based high-volume broad screen­
ing for HIV-I protease inhibitory activity18 of a set of 
5000 dissimilar compounds from Upjohn compound 
collection, the 4-hydroxycoumarin 1 (warfarin, see 
Figure 1) was identified as a weak inhibitor (IC50 * 30 
fiM). Warfarin has also been reported as having anti­
viral effect on HIV-I replication and spread.19 More 
recently, independent studies20'21 have described 4-hy-
droxybenzopyran-2-ones (warfarin and derivatives) and 
4-hydroxypyran-2-ones as competitive inhibitors of HIV 
protease. On the basis of the 4-hydroxycoumarin struc­
ture, additional compounds from a similarity search of 
the Upjohn compound collection were then tested as 
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Figure 3. Crystal structure of inhibitor 2/HIV-l protease 
complex. Four residues at the enzyme active site are shown 
(residues from one monomeric unit are in green and labeled 
A while residues from the second monomeric unit are in blue 
and labeled as B): the catalytically essential aspartic acid 
residues (Asp25's) and the two isoleucine residues on the 
flap of the enzyme (Ile50's). Hydrogen bonding of inhibitor 2 
(in white) to the enzyme active site is shown with dashed 
lines. 

potential inhibitors, and another 4-hydroxycoumarin 2 
(phenprocoumon, see Figure 1) was found with signifi­
cantly improved inhibitory activity (K1 = 1 «M).22 A 
Lineweaver-Burk plot illustrating competitive inhi­
bition by compound 2 is shown in Figure 2. This 
inhibitor 2 also showed antiviral activity (EDr.o = 1 0 0 -
300 //M), albeit weak potency, in HIV-I infected PBMC. 
Very importantly, warfarin and phenprocoumon have 
already been in use as therapeutic agents in humans,2 3 

with high oral bioavailability and low clearance, and, 
therefore, are promising lead structures for the discov­
ery of orally bioavailable non-peptidic HIV protease 
inhibitors. 

To facilitate the lead optimization process, a crystal 
structure of inhibitor 2/HIV-l protease complex was 
determined24 at 2.5 A resolution. Due to the C'i sym­
metry of the HIV-I protease, the asymmetric inhibitor 
2 could be found in two orientations related by a 180° 
rotation. Figure 3 shows one orientation of compound 
2 in the enzyme active site, in which the C-4 hydroxyl 
group was located within hydrogen-bonding distance to 
the two catalytic aspartic acid residues (Asp25A and 
Asp25B). The two oxygen atoms of the lactone func-
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tionality were positioned within hydrogen-bonding dis­
tance to the two NH amides of the two isoleucine 
residues (IleSOA and Ile50B) on the flap of the enzyme. 
The lactone oxygen atoms in compound 2, therefore, 
replaced the ubiquitous water molecule found in com­
plexes of peptide-derivative inhibitors.2526 This hydro­
gen-bonding network of the 4-hydroxycoumarin defines 
the essential pharmacophore of this new class of inhibi­
tors. Information from the crystal structure of inhibitor 
2/HIV-l protease complex forms the basis of iterative 
cycles of structure-based design of more active ana­
logues. 

In this crystal structure of compound 2/HIV-l pro­
tease complex (Figure 4), the a-ethyl group and the 
a-phenyl ring a t the C-3 position lie approximately in 
the Si and S2 subsites,27 respectively. The positioning 
of the benzene ring of the 4-hydroxycoumarin in the Si ' 
subsite does not readily accommodate the placement of 
substituents that might extend into the S2' subsite. It 
was reasoned that removal of this fused benzene ring, 
resulting in the 4-hydroxy-2-pyrone ring, might offer the 
opportunity to place substituents that could be posi­
tioned into both the Si ' and S2' subsites. As shown in 
Scheme 1, acid-catalyzed condensation of 4-hydroxy-6-
methyl-2-pyrone (3) and a-ethylbenzyl alcohol (4) gave 
the substituted 2-pyrone 5,28 the dianion of which was 
alkylated at the C-6a position with benzyl bromide to 
give compound 6.28 This 4-hydroxy-2-pyrone 6 (Ki = 0.5 
uM) was found to possess similar activity as inhibitor 2 
and supported the viability of the 4-hydroxy-2-pyrone 
as a template for the preparation of HIV protease 
inhibitors. A crystal structure of inhibitor 6/HIV-l 
protease complex was then determined24 at 2.3 A 
resolution, and the structure in Figure 5 showed 
direct analogy to the hydrogen-bonding network found 
with inhibitor 2. As shown in Figure 6, the phenethyl 
group at C-6 of compound 6 is located near the S2' 
subsite. 

I t was further reasoned that an added ethyl group at 
the C-6a position of compound 6 might place this added 
group into the Si' subsite and moves the phenyl ring 
closer into the S2' subsite. As shown in Scheme 1, the 
dianion of compound 6 was alkylated a t the C-6a 
position with ethyl iodide to give compound 7.28 The 
sequential alkylation of compound 5 can also be per­
formed in the same reaction vessel with benzyl chloride 
and then ethyl iodide, without isolation of the interme­
diate compound 6. The structure of compound 7 can 
be viewed as having pseudosymmetric substitutions; the 
C-3a substituents consist of an ethyl and a phenyl 
group, while an ethyl and a benzyl group can be found 
at the C-6ct position. These four substituents are 
designed to extend into the central core of S2 to S2' 
enzyme pockets. Compound 7 was found to be an 
inhibitor with further significant improvement in bind­
ing affinity (Kj = 38 nM). Compound 7 has two chiral 
centers and, therefore, is a mixture of four stereoiso­
mers. These individual isomers were isolated from a 
preparative HPLC procedure29 on a chiral column. 
These individual diastereomers30 were all found to be 
HIV-I protease inhibitors and showed K-, values of 14, 
43, 80, and 109 nM. 

Compound 7 was also found to be equally effective 
against HIV-2 protease (ZiTi = 32 nM). It is selective for 
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F i g u r e 4. Surface representation of inhibitor 2 in the enzyme active site. The van der Waal surfaces of inhibitor 2 (in white) 
and 10 residues of the enzyme active site are shown (residues from one monomeric unit are in green and labeled A while residues 
from the second monomeric unit are in blue and labeled as B). The S2, Si, Sj ' , and S2' subsites of the enzyme are also indicated. 

Table 1. Selected Pharmacokinetic Parameters for Inhibitor 7 
Calculated from Time-Course Plasma Concentrations (mean ± 
sd)° 

species 
dose 

(mg/kg) tvwQu) 
CIT 

(mL/min/kg) Vss (L/kg) 

dog (n = 3) 
rat(n = 6) 

2.5 
12 

6.0 ± 1.2 
4.0 ± 0.76 

0.7 ± 0.2 
0.8 ± 0.2 

0.26 ± 0.03 
0.10 ± 0.02 

" The plasma concentration-time data were fitted to math­
ematical equations using nonlinear regression analysis, and the 
distribution rate constant (0) and half-life Uiaf) were estimated. 
The total body clearance ( O T ) and steady-state volume of distribu­
tion (Vss) were also calculated. 

H I V p r o t e a s e s ; a t 10 / /M, it i nh ib i t ed t h e following 
h u m a n a s p a r t y l p ro t ea se s : r e n i n , ga s t r i c s i n , peps in , 
c a t h e p s i n D, a n d c a t h e p s i n E to t h e e x t e n t of 0%, 0%, 

5 3 % , 52%, a n d 72%, respect ively . 3 1 T h e an t iv i r a l act iv­
ity w a s assessed a g a i n s t HrV-lniB-infected MT4 a n d H 9 
cells.3 2 T h e dose -e f fec t cu rves in t h e s e acu te ly infected 
cells a r e s h o w n in F i g u r e 7, a n d t h e E D 5 0 v a l u e s w e r e 
d e t e r m i n e d to be 3 /(M. C o m p o u n d 7 w a s also s h o w n 
to be effective a g a i n s t cl inical i so la tes (EDso = 4/(M), 
inc lud ing AZT r e s i s t a n t s t r a i n s . 3 3 T h e r e w a s no cyto­
toxicity no ted a t 10 / (M of compound 7, a n d t h e TCID50 
was e s t ima ted to be 20 /(M. P h a r m a c o k i n e t i c p rope r t i e s 
a n d abso lu te oral b ioava i lab i l i ty of compound 7 w e r e 
d e t e r m i n e d in r a t s a n d dogs. T ime-cour se blood levels 
of compound 7 i n dogs after i n t r a v e n o u s (2.5 mg/kg) and 
oral (10 mg/kg) a d m i n i s t r a t i o n s a r e s h o w n in F i g u r e 8. 
An oral dose of 10 mg/kg r e s u l t e d in C m a x above 50 /(M, 
a n d blood levels above 10 /(M ( the in vitro ED90 va lue ) 
could be m a i n t a i n e d for 6 h. Selected p h a r m a c o k i n e t i c 
p a r a m e t e r s for inh ib i to r 7 in r a t s a n d dogs a r e s h o w n 
in Tab le 1. T h e ora l b ioavai labi l i ty of compound 7 in 
r a t s a n d dogs w a s 7 6 % a n d 4 5 % , respec t ive ly . Af te r 
addi t iona l ex tens ive precl inical s tud ie s , compound 7 (U-

F i g u r e 5. Crystal structure of inhibitor 6/HTV-I protease 
complex. Four residues a t the enzyme active site are shown 
(residues from one monomeric unit are in green and labeled 
A while residues from the second monomeric unit are in blue 
and labeled as B): the catalytically essential aspartic acid 
residues (Asp25's) and the two isoleucine residues on the flap 
of the enzyme (Ile50's). Hydrogen bonding of inhibitor 6 (in 
white) to the enzyme active site is shown with dashed lines. 
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Figure 6. Surface representation of inhibitor 6 in the enzyme active site. The van der Waal surfaces of inhibitor 6 (in white) 
and 10 residues of the enzyme active site are shown (residues from one monomeric unit are in green and labeled A while 
residues from the second monomeric unit are in blue and labeled as B). The Sa, Si, Si', S2', and S./ subsites of the enzyme are also 
indicated. 
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Figure 7. Dose effect of inhibitor 7 on p24 inhibition in HIV-
luiB-infected MT4 and H9 cells. MT4 or H9 cells (5 x 104 cells) 
were seeded into 96-well culture dishes and infected by 
incubating for 90 min with stock virus at 0.003 multiplicity of 
infection. Stock solution at 10 mM of inhibitor 7 in DMSO 
were diluted into culture medium. Infected cells in triplicate 
wells were maintained in the absence (controls) or continued 
presence of inhibitor 7 for 5 days in a humidified CO2 
incubator. Culture supernatants were harvested and the 
extent of p24 core antigen production was measured by an 
ELISA specific for HIV-I p24 antigen (Coulter). 

96988 , M W 362), w h i c h is s y n t h e s i z e d in two chemica l 
s t e p s , e n t e r e d p h a s e I cl inical t e s t i n g a s t h e first in a 
se r i e s of th i s p r o m i s i n g c lass of non-pep t id ic H I V 
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Figure 8. P l a sma- t ime profile of inhibitor 7 (mean ± sd) in 
beagle dogs. Three fasted male beagle dogs received a 10 mg/ 
kg dose of inhibitor 7 orally in no. 12 hard gelatin capsules 
formulated in 80:20 propylene glycol/0.1 N aqueous NaOH (8.4 
mg/mL). Another three dogs received at 2.5 mg/kg bolus 
intravenous injection of inhibitor 7 formulated in 25% aqueous 
(hydroxypropyl)-/J-cyclodextrin (9.7 mg/mL). Blood samples 
were collected from the jugular vein into heparinized tubes. 
Plasma was harvested by centrifugation at 120Og for 15 min, 
and 200 /iL of plasma was mixed with 1 mL of acetonitrile 
(containing an internal standard) to precipitate plasma pro­
teins and centrifuged. The supernatant was evaporated to 
dryness under nitrogen and reconstituted in mobile phase 
consisting of 55:45 acetonitrile/0.5% acetic acid. The prepared 
samples were chromatographed on a reverse-phase column 
(Rx-SB-Phenyl, 250 x 44 mm id, 5 fiM) and a mobile phase 
flow rate of 1.0 mIVmin. The UV absorbance of t he column 
effluent was monitored at 295 nm. The circle and square 
symbols represent the p l a sma- t ime profile after intravenous 
and oral administration, respectively. 

p r o t e a s e i nh ib i t o r s a s po ten t i a l t h e r a p e u t i c a g e n t s for 
t h e t r e a t m e n t of H I V infection. 
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